Spatial Monte Carlo integration with annealed importance sampling

نویسندگان

چکیده

Evaluating expectations on an Ising model (or Boltzmann machine) is essential for various applications, including statistical machine learning. However, in general, the evaluation computationally difficult because it involves intractable multiple summations or integrations; therefore, requires approximation. Monte Carlo integration (MCI) a well-known approximation method; more effective MCI-like method was proposed recently, called spatial (SMCI). estimations obtained using SMCI (and MCI) exhibit low accuracy models under temperature owing to degradation of sampling quality. Annealed importance (AIS) type based Markov chain methods that can suppress performance low-temperature regions with force weights. In this study, new evaluate combining AIS and SMCI. The performs efficiently both high- regions, which demonstrated theoretically numerically.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Monte Carlo with Importance Sampling Method

Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT). VRT objective is to reduce the variance due to Monte Carlo methods become more accurate with a variance approaching zero and the number of samples approaches infinity, which is not practical in the real situation (Chen, 2004). These techniques are ...

متن کامل

Monte Carlo inference via greedy importance sampling

We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...

متن کامل

Annealed importance sampling

Abstract. Simulated annealing — moving from a tractable distribution to a distribution of interest via a sequence of intermediate distributions — has traditionally been used as an inexact method of handling isolated modes in Markov chain samplers. Here, it is shown how one can use the Markov chain transitions for such an annealing sequence to define an importance sampler. The Markov chain aspec...

متن کامل

Annealed importance sampling of peptides.

Annealed importance sampling assigns equilibrium weights to a nonequilibrium sample that was generated by a simulated annealing protocol [R. M. Neal, Stat. Comput. 11, 125 (2001)]. The weights may then be used to calculate equilibrium averages, and also serve as an "adiabatic signature" of the chosen cooling schedule. In this paper we demonstrate the method on the 50-atom dileucine peptide and ...

متن کامل

Nonlinear and Nonnormal Filter Using Importance Sampling: Antithetic Monte Carlo Integration

In this paper, the importance sampling filter proposed by Mariano and Tanizaki (1995), Tanizaki (1996), Tanizaki and Mariano (1994) is extended using the antithetic Monte Carlo method to reduce the simulation errors. By Monte Carlo studies, the importance sampling filter with the antithetic Monte Carlo method is compared with the importance sampling filter without the antithetic Monte Carlo met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreve.103.052118